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On Approximation of Distribution and Density Functions

Hans Wolff

Abstract

Stochastic approximation algorithms for least square error approxim.-

tion to density and distribution functions are considered. The main results

are necessary and sufficient parameter conditions for the convergence of the

approximation processes and a generalization to some time-dependent density

and distribution functions.
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On Approximation of Distribution and Density Functions

Hans Wolff

In this paper we deal with the special approach to the estimation of

an unknown density or distribution function of a real-valued random

variable , as developed in [1]-[8]. Using the same notation we briefly

describe this approach.

Consider the N -dimensional vector of functions 1)(x) = (yx),...,ON(x))T .

The components 0i(x) , i = 1,...N , are assumed to be linearly independent,

square-integrable and bounded real functions on an interval Q = [a, b] of

the real axis. If a sequence of independent observations (xl,x2,...) from

t is available, the 1,roblem is then to find an approximation

F(x) = E a.yx) = aT0(x)

in 2 for the unknown distribution function F(x) , such that Nx) mini-

mizes the integral-square-error criterion

(1) G (a) = [F(x) - QT0(x))2 dx

with respect to the vector of coefficients a = . The analo-

gous estimation problem for the unknown density function f(x) consists in

determining the estimator f(x) ,

N

f(x) = E piyx) ET0(x)

i=1

such that again the integral-square-error criterion

(2) G2(a) =,/ [f(x) - e4'(x)]2 dx

is a minimum with respect to E .
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As can be easily shown (see e.g., [1]), minimizing (1) and (2) is

equivalent tc solving the regression equations

(3)

and

E[ J y)1(y) dy - AU] = 0

si

(4) E[w(0
0 ,

respectively, where A is a known N x N -matrix,

A - 111)(Y)1) T
(Y) c15r

and z(t, y) and w(0 are defined as

Y) , i1 Sif Y
y

(10 t E ]
1,/(0

4
= -0 if

The purpose of the mentioned papers consisted in solving the parameter-

dependent regression equations (3) and (4) by the application of the stochastic

approximation theory as an appropriate method. A further goal was to give

an iterative solution in order to avoid computer storage problems. But

becauseofthelinearindependenceofthe) , i = 1,...,N , A
-1

exists

and we can solve (3) and (4) directly:

(5) a* = A 1E[fz(t, y)*) dy] ,

(6) e = AE[w(0)

Therefore we have only to estimate the expectations of the parameter-independent
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random variables /1 W, yMy) dy and - w(0 . So simp)ifying

the statement of the problem we can expect stronger limiting theorems for

those procedures considered in t1]-[8]. In previous papers ([9], [10]) the

author has dealt with such iterative approximations of the expectation of

a random variable. The following process was considered.

Let (a
n

) be any sequence of real numbers restricted to 0 < a
n

< 1

for all n and let n = (y1,...,yr) denote the n -th observation

of a real-valued N -dimensional random variable a =

Then the approximation procedure (X
n

) is defined by the iteration formula

(7) X11+1 - (1 -a a
n4-1

)X
n

+
n-41

Y
n+1 '

n = 0, 1, 2, .

with an arbitrary but fixed starting point X0 = a E. RN . Theorem 1 gives

necessary and sufficient parameter conditions for the convergence of this

process.

Theorem 1: The rrocess (7) converges under the assumption

0 < max Var < 03

1<i<N

with probability one and in the mean to the expectation M of n

if and only if

(8)

X
n
-)M w.p.1 , E(X

n
- M)

2
-4 0 (n 03) ,

n

an 0 , E a -4 03 (n 03) .

i-1
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The parameter condition (8) is only sufficient if we admit the degenerated

and trivial case Var = 0 , i = 1,...,N . The proof of Theorem 1 is

given in [10].

The application of Theorem 1 to the random variables A
-1

and A
-1
_6

yields at once those estimation procedures (a
n

) and (4) for the sought

vectors or* and )(- considered in [1)481:

( 9 ) gn+1 (1 an+l)an an1-1A

-1

1,n+1 Pa° c
RN

1.7.13.1

,
(10) 4 - (1 - a )6 + a A

-1
z b.0 =CEAN w.p.1

n+1 "n n+1- -2,n+1 '

where z, and z
2

denote the n -th observation of the random variables
rc -,n

/1 and , respectively:

fz(xn,y)(:1(y) dy =i
a

I

b

cl?(Y) (1,Y

b

1)(y) dY

if

lx

x
n

E n

x
n

if

x
n

< a

a < x < b
n

0 x
n

> b

From Theorem 1 follows immediately,

Theorem 2: The stochastic process defined by (9) and (10) converges with

probability one and in the mean to W and V , respectively, if and only

if the sequence of parameters (an) fulfills condition (8).
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We mention that the following modifications of (9) and (10) suggested,

for example in [1], [6], [7],

-1 1
n+1

a (1 -a )0 +a11A . .

--n+1 n+1 n +1- n + 1 . -1
1=1

n+1

k+1 (1 an+1) + an+l-j.

-1

r. + 1 1.E
1

do not have a faster rate of convergence than (9) and (10) themselves as was

erroneously asserted in [6] and [7]. The error consisted essentially in

1 1
n+1

taking an and ----- E z . (or
n

and E z . , respectively)
n + 1 1,1 n + 1 -2 1,

as indepenaent random variables (e.g. [6], p. 133, equation (7)).

Time-dependent Density and Distribution Functions

Instead of identically distributed values xi , i = 1,2,... from ;, we

deal now with a sample fx,,x2,...1 corresponding to a sequence of random

variables where Si is distributed with Fi(x) , i = 1,2,...

representing, e.g. successive time periods. Since we want to derive an analo-

gous limiting theorem to that given in Theorem 2 we restrict ourselves to the

casewhere(F.W)co"ergestoalilllitingdistriblitionF00811C"f'(())

converges to a limiting density function f(x) . For this situation we have

the following corollary to Theorem 2.

Corollary: Theorem 2 holds even in the case where the observations xi ,

1. 1,2,... , are drawn from a population with a distribution function

Fi(x) and a density function fi(x) , if we assume
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Fi(x) -) F(x) , fi(x) f(x) (i

[F(x) distribution function, f(x) density function].

This corollary follows immediately from (5) and (6) and from a generalized

version of Theorem 1 given below.

Let fyi = (yi,i,yi,2,...,yiN)T) be a sequence of independent N

-dimensional real-valued observations distributed with [Fi(Y1,...,YN))

respectively, and ,There Fi(yi,...,yN) converges to a nondegenerated. limiting

distribution F(yi,...,yN) . Th n we have

Theorem 5: The process (7)

X = (1 -a ) X+ay
, X0 =acRPI

n+1 n+1 -n n+l-n+1

converges under the assumption

max Var y. . < C < , i = 1,2,...
l <j <N

with probability one and in the mean to the expectation I of F(yi,...,yN)

,

X
n

-) M w.p.l , E(X
-n

- M)
2

-4 0 (n .9)

if and only if [an) fulfills condition (8).

Because of the length of the proof of this theorem, the reader is

referred to [9] or [10]. Some problems arise if we consider the case where

n is the whole probability space, especially the entire real axis. In this

case it is natural to require that the approximation f(x) should satisfy

the normalization condition

-The assumption fi(x) -)f(x) , where f(x) is a density function, is

sufficient for F (x) -)F(x) , and F(x) distribution function (see e.g.,

[11)).
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dx = 1 .

Unfortunately this is not true in general. To avoid this we can use Lagranz.e's

coefficientsinethodaswasdoriefororthmormaninctions.(x) by

Laski [5] and for a similar problem by Nikolic and Fu [6].

Instead of (2) we now minimize the criterion

f2

N N
. ,

[f(x) - E aim .(x)]2
i

dx - 2A( E f(9.i - 1) ,

. ..

1.-... 1.1

where 4 is a Lagrange coefficient and

d1 .--)0.1 (x)dx,0<ld.1 1.< , i 1,2,...,N

The minimization conditions

Aa
3 - 0 , i - 1,...,N ; z?3 - 0

i

yield the system of linear equations

N
E d %1 1

i=1

N

E dk? E(4'k) , k 1,"N '

i=1

where A = (a
ik

) means the same N x N -matrix as given in (4).

From this we obtain the solution
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N N
IAI E Ec:'

k
.2=1

(x) E d A
k=1N 9, t.

f3t* = T-- E A. E4).(x) + d.
,

i=1 li 1
1 N N

E E d E d A.

k=1 t=1
2, M.,

where is the adjunct of .A. aij

With the abbreviations

N N N

E d A. E d
k
Aki E d.A.

1 ij
R =1 k=1 i=1

D. - D. -
ij

t 1Z

N N ,

J N N
E d E d A. Ed Ed A,

k=1
k

RA. t Kt
k=1 R=1

k z x9,

1

ij jj
Tr (Ai - Di) ,

IAI

we can rewrite (11):

N
fit* = D. + E c. Eq).1 (x) .

i=1

From Theorem 1 it follows at once that the stochastic processes defined by

N
(12) Y

n+1
= (1 - a

1
)Y
n
+ a

n+1
[D. +

1E1
c
ij i

(x
n

)] ,

n+ j .

Y
0

= b. e R' , j = 1,...,N

converge to pt* , j = 1,...,N, with probability one and in the mean if and

only if the parameter condition (8) is fulfilled. To avoid unnecessary compu-

tations we estimate the parameters B. = 0*J * - D . The final form of the

10



-9-

sequential estimation of the unknown vector of parameters

BT (31* - DN)T is then

(13) (1 - a Y
0

= b c Rif,

In+1 n+1
)y
n
+ a

n
C - n )

where C is the N x N C = (cid .

Theorem 4: The process (13) converges to the vector BT with probability

one and in the quadratic mean iff the parameter sequence (an) satisfies

condition (8).

We give a simple application. Co..sider a mixture

N N
p(x) = E 0iyx) , E 0i 1

i=1 i=1 1

of density functions '.(x) , i = 1,...,N . The set of functions 0i(x)

is assumed to be known and to be linearly independent on a . Furthermore a

sequence of independent observations (x1,...,x
n
)--identically distriblo-

with p(x)--may be available from which we want to estimate the parameters

pi , i = 1,...,N . This decomposition of a mixture can be done by our

sequential estimation procedure (12) or (15). Because di equals 1 ,

i = 1,...,N , we get simpler formulas for the D..
ij

and D. :

N N N
E A. E.E A. A..
=1

34
k=1

A.

1.1 13
D D
ij N N 'liN

AE E A-
j

E E
ne

k=1 4=1 k=1 trl
-10,

i)3 = 1'...)N

The stochastic processes (12) and (15) converge to the unknown parameters 13.

j = 1,...,N , and B. = p. - D,, respectively.
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